Adapting applications
to exploit
virtualization management knowledge

Vitalian A. Danciu and Alexander Knapp

DMTF SVM 2013

LJ
MAXIMLIANs-
MoNGREN

Universitat
Augsburg
University

MNM

TEAM
MUNICH NETWORK MANAGEMENT TEAM

Qutline
" MNM
Motivation

Applications running on virtualized
infrastructure suffer!

agement knowledge

@ Example of “suffering”, by experiment
@ How to adapt applications’ behaviour
@ Relation between application and the management system

2
®
=
T
a
«
=3
i)
a
IS
-]
<

Impact of virtualization on applications

o A N
An Inter-VM communication experiment — MM
g
é co-located distributed choked
§ App. component ’I‘ ’E‘ ’%‘ ’%
5 VM and guest OS
Hypervisor | [I O VA e B G VA
7 —/

Physical network

o
g
g
2

X
8

3
2
s
g
3
<
-
2
s
2
3
2
5
a
<
<
s
E]
s

2
)
g
@
=
2
®
=
T
a
«
=3
i)
a
IS
-]
<

Impact of virtualization on applications MNM
Transmission time for 107 bytes UDP payload (sender’s view) ——=——

time, co-located VMs
time, physmally distributed VMs --------
! time, phyS|caIIy distributed VMs, choked ---------

ualization management knowledge

Wallclock time (s)
Wallclock time (s)

o
g
g
2
X
8
3
2
s
g
3
<
-
2
s
2
3
2
5
a
<
<
s
E]
s

\\q ________
0.1 0.1
0 250 500 750 1000

Chunk size (bytes)
Performance seems equal; how can this be?

o
x
)
g
@
=
2
®
=
T
a
«
=3
i)
a
IS
-]
<

Impact of virtualization on applications

frmils o ___MNM
Segment drop rate (receiver’s view)
10 100
[P * = 90
* %
23 * - 80
8
B . time, co-located VMs _ 70
= * time, physically distributed VMs --------
£ — ! time, physically distributed VMs, choked --------- 9
2 < drop, co-located VMs -+ go =
. 2 drop, physically distributed VMs --—x-- @
- = 3 drop, physically distributed VMs, choked - - -~ 5
g¢ % 1 50 £
c 8 9 °
SE o 2
58 © - 40 3
ek = &
3 . = 30
S g
2 &
8 2 - 20
25
8
<
& 0
= 1000
;% Chunk size (bytes)
<<

Deployment setup can change at any time: how can applications adapt?

Impact of virtualization on applications
Problem

MNM

TEAM

Observation: Deployment changes quickly, but application behaviour does not.
@ Application operates from static-world assumptions.
@ Virtualization masks deployment state from application
= Detrimental effects in some of the states

Scope of the problem (network thoughput is but an example!)
@ locality: communication metrics (throughput, delay, faults, .. .)
@ resources: CPU capacity, RAM, ...
@ context: security, hardware capabilities, . ..

ualization management knowledge

Vitalian A. Danciu and Alexander Knapp

How to render application software
virtualization-aware?

Adapting applications to exploit

Adapting applications to exploit virtualization management knowledge

Vitalian A. Danciu and Alexander Knapp

Problem analysis
Solution dimensions

Source of Information

Gossip
Point of Decision

Discover
Y External function

Management Application

Management

Self-adaptivit:
ptivity Operating system

Module replacement
Application

Binary modification
Point of Change
Source modification

Method of Change

Select one point in this solution space!

Adapting applications to exploit virtualization management knowledge

Vitalian A. Danciu and Alexander Knapp

Problem analysis
Source of information, point of decision I

knowledge of the knowledge of the
application’s environment’s
needs state

fine—grained, o local,
procedure— application limited
level

guest OS

hypervisor

coarse,
capacity— management global, (ideally)
level system comprehensive

Choices
@ Management system to provide environmental information/guidance
@ Application to decide on it

ualization management knowledge

o
g
g
2

X
8

3
2
s
g

3

<

-
2
s

2
3
2
5

a
<

<
s
E]
H

o
x
)
g
@
=
2
®
=
T
a
«
=3
i)
a
IS
-]
<

Problem analysis
Point and method of change

scope,

required
authorisation

all
applications

single
function

Choices

effort,

required
knowledge
of application

exchange of system
system libraries administrator
call
interception
programmatic
modification
manual application
modification programmer

@ Modification of application code (source or binary)
@ Programmatic, machine-supported modification

rtualization management knowledge

Vitalian A. Danciu and Alexander Knapp

Adapting applicati

Modifying applications
Code example: output to a UDP socket

1 int write_udp (const charx targetip,
unsigned int port,
long count) {
int transmit_socket = socket (AF_INET,
5 SOCK_DGRAM,
IPPROTO_UDP) ;
connect (transmit_socket,
(struct sockaddrx)&si_other,
sizeof (si_other));
10 int ¢ = 0;
while (c++ < count)
write (transmit_socket,
13 (voidx) chunk, (size_t)sbuf);

Modifying applications
Aspect-oriented programming (AoP) at a glance e

“Glorified string substitution with knowledge of the programming language”

CIC++ 'j

Application code (original)

Aspect language @ Aspect: “a cross-cutting concern
Aspect code 2 @ Aspect language
!

@ matching/scoping of language constructs

ualization management knowledge

o
g
g
2

X
8

3
2
s
g

3

<

-
2
s

2
3
2
5

a

<
<

s

E]

=

Aspect (classes, methods, .. .)
Weaver @ access to program structures
e manipulation of parameters, return
’ C/C++ 'j values, ...
Application code (woven)

@ Pointcut expressions: where to modify

’ C Compiler / Linker ‘

Executable & Executable &

@ Advice expression: how to modify

Compilation with aspect weaving

o
x
)
g
@
=
2
®
=
T
a
«
=3
i)
a
IS
-]
<

Normal compilation

@ Weaving: integration of Aspect code

Modifying applications

. . MNM

Example: a buffering aspect (for both sockets and files) I

1 aspect Buffering ({

pointcut openpc() = "% ...:: open(...)"i4 iiiiiiiinns Intercept the function calls,

3 pointcut socketpc() = "% ...:: socket(...)"; that create file handles.

4 advice call (openpc () | Isocketpc()) : around() {

5 P PLOCEEA () 7 4 oottt ettt Allow the call to execute

6 int myfh = *((int*)tjp->result ()); <c.ocoiiiriin.. and to yield a file handle,

7 writebuf[myfh] = (charx)malloc (bufsize); < Associate the file handle with a buffer.

8 }

pointcut writepc() = "% ...:: write(...)"; <4 Intercept the write() calls.
10 advice call (writepc()) around () {

int fd = x((intx)tjp->arg(0));

const voidx buf = *((const voidxx)tjp->arg(l));

unsigned int count = * ((unsigned intx*)tjp->arg(2));

©
=)
S
2
H
5]
c
=
=
I}
=
)
&
c
5}
£
S
2
T
N
©
=

Vitalian A. Danciu and Alexander Knapp

int myfh = _getmyfh (£fd);

15 if ((buffill[myfh] + count) < bufsize) { “—....coiiirninn. Write to buffer, if room
fn 16 memcpy (writebuf [myfh] + buffill[myfh], buf, count);
; buffill [myfh] += count;
2 }
2 @18 [i When full, flush buffered data,
% 20 write (fd, writebuf [myfh], buffill[myfh]);
s 21 buffill [myfh] = 0;
= tijp->proceed (); <—.......iiiiiiiiiiiiii... and allow the current write () to execute.
3 23 }
< * ((intx)tjp->result()) = count;4—........covvnenn.. Always return the expected value.

25 }

Modifying applications

' - MNM
Behaviour of original vs. woven code
©
=1
= 10 ¢
2
é without aspects
E with aspects
g D
g ry
Ef2 £,
s K N
g5 3 =
S © NN
® < © SN
22 = eSS
e 3 PR
85 0.1
S c
9 &
s
S
g
= B
&) o - 250
g e 50 200
3 100
2 Buffer size (bytes) 500 50

Chunk size (bytes)

Outlook

Supplying management information to applications

MNM

TEAM

g —x_adapt

3 N

2 Aspect

E.} . code | application
é_’ % notify

i E Management subscribe

T2 System “Event

5s = Guest OS
32 filter .- . Service

= - .
23 knowledge about - ||(_Manage Hypervisor
5 infrastructure observe Physical machine
2

Outlook
Conclusions and Open questions I —

Your software runs on virtualized infrastructure —and it suffers!

@ Environment has changed; application code has not.
@ Need to adapt application code, but

e not manually (too large code base)
e not centrally (different applications have different needs)
@ not to be self-adaptive (selfish adaptation obviates management goals)

Our AoP approach works, however it has limitations
@ Applicability determined by code quality — quality metrics?
@ Conflicting aspects— balancing? aspect “patterns”?

Vitalian A. Danciu and Alexander Knapp

Management is capable to supply global information, however
@ it may not wish to (public XaaS scenarios) — discovery, gossip?
@ which information is relevant to ask? — situation/cause/effect? formalism?

Adapting applications to exploit virtualization management knowledge

	Outline
	Impact of virtualization on applications
	Problem analysis
	Modifying applications
	Outlook

