
Page 1 of 6

Automating Applications Management in the Enterprise
using DMTF Information Models

Umesh Bellur
Indian Institute of Tech. Bombay

Powai, Mumbai 400076
India

+91 22 25767865

umesh@it.iitb.ac.in

ABSTRACT
Most enterprises today are heavily if not completely dependent on
systems for the running of the business. Applications that
automate business operations are mostly based on distributed,
component based architectures where advances in server side
component models have considerably simplified development. The
simplicity of constructing these applications has resulted in an
increased complexity on the operational side of managing the
component tapestry. The increase in operational complexity has
reached a point where it is no longer feasible for humans to
manage the applications and infrastructure required to run an
enterprise. The initial steps to provide self managing application
environments are now being taken – a paradigm known as
“autonomic computing” is in it’s infancy of evolution. DMTF
specifications that are currently being developed for management
of distributed applications form the basis for some of this work.
There have been numerous proposed models of how one achieves
self management. In this paper, we formulate the research
problems and basis for “lights out” management of enterprise
application environments. We also illustrate our approach with a
way of managing simple web applications based on Java Servlets.

Categories and Subject Descriptors
D.3.3 [Run time Environments]: Distributed systems,
Autonomic computing, and Analytical methods.

General Terms
Management, Measurement, Performance, Physical Design,
Reliability.

1. INTRODUCTION
As more distributed applications become mainstream enterprise
solutions, there have been considerable advances in making the
development of these applications simpler. The development of

server side component models followed by standardization of
server side “software containers” to host these components have
helped considerably shorten the development lifecycles of large
applications. Indeed it is not uncommon to see release cycles of 6
months or less in the enterprise for major features and 3 months or
less for minor feature adds.

The impact of these rapid application development paradigms has
shifted the complexity from what used to be development to
deployment and beyond – tasks that are commonly handled by the
IT Operations staff in the enterprise. Once the application has
been developed, the first task would be to map it to physical
infrastructure given the expected workloads and the availability of
shared physical resources (CPU, disk, network bandwidth etc.).
Once resource mapping is done, the various resources need to be
configured with the appropriate parameters to handle the
application. This in itself is a task of great complexity not only
because of the dependencies between the various components
making up an application but also because one needs to map any
QoS requirements of the application (such as response times and
uptime) to the selection of the different physical components that
the application will run on. For example, network QoS may have
to be negotiated appropriately since network communication
quality can have a significant impact on application performance
of distributed applications. The complexity also arises from the
numbers of parameters that have to be tuned on resources such as
application servers and relational databases. The modern J2EE1
application server has over 300 parameters that have to be tuned
in order to extract the best value.

Subsequently, monitoring the application with a view to resolving
faults that may occur as well as keeping the performance tuned in
spite of varying workloads is also a daunting task – one that is
amplified by the presence of several such applications running on
the enterprise’s wide and/or local area network. Empirical
evidence suggests that it is impossible to manually handle and
automating these tasks is a necessity.

Of late, there has been an increased focus on “autonomic
computing” techniques – techniques that determine how
application environments can configure and heal themselves in
the event of problems. For example, an application server (or

1 J2EE is a trademark of SUN and denotes the server side Java

component architecture commonly used to build enterprise
applications today.

 Copyright:

Page 2 of 6

middleware server) can have over a hundred different parameters
that have to be tuned.

In this paper, we first present an application management
architecture that spans resource discovery to fault detection,
isolation and correction. We are in the process of realization of
this architecture and this paper represents work in progress
towards the goal of what is termed zero-touch or lights out
management2. This is the LAMDA (Lights-out, Automated
Management of Distributed Applications) project being done at
IIT in conjunction with the industry.

2. The LAMDA Vision
There are several facets to autonomic computing all of which form
part of the LAMDA vision.

a. Systems Architecture and deployment – Self
Configuration. There are two aspects to this – static and
dynamic. Static design lays out certain constraints on
location of the application components and maps it
initially to a physical topology. The dynamic version
ensures that these constraints continue to be met and
may move application components, add or remove
computing resources and reconfigure the infrastructure.

b. Root Cause Isolation and correction - Self Healing. Self
healing can be for the purposes of correcting a structural
constraint or property that has been broken such as
those related to performance, availability or capacity.

c. Self Protection – Related to the second facet, this is for
the purposes of healing a security breach that has
occurred. The techniques and the basis for self
protection are often very different from those used for
self healing and so will be considered separately.

As a part of this effort (especially part a), we have also developed
meta models for describing application QoS parameters and
resource needs which we use in trying to come up with the
physical design.

2.1 The Basis of LAMDA

2.1.1 Structural Basis - Topology
The starting point for self-healing or self configuration is to know
one self and so determining the topology of the application in
relation to its execution environment is critical. An application
cannot be deployed without knowledge of the various components
that make it up. Both the static parts of the component (viz, it’s
packaging) as well as it’s physical footprint need to be well
understood for problem isolation and correction.

Topology therefore is a description of:

a. The infrastructure (both physical such as compute
servers as well as logical such as server component

2 Lights Out management is a term commonly used in the IT

industry to indicate that no human is needed to manage these
applications.

containers), its configuration and its dependence on the
underlying network.

b. The static view application components and their
configurations.

c. The dynamic or run time view of application
components that execute on the infrastructure. This
specifies the physical footprint that the component
exhibits at run time. For example, an EJB can be
deployed on several J2EE containers either as a cluster
or singly.

d. Dependencies that exist between application
components, between application components and
infrastructure (software, hardware and network).

Topology is a realization of the meta-model that characterizes
applications and their execution environments and provides a
canonical language for common understanding of what an
application is and what it depends on. Every tool in the LAMDA
arsenal works off of topology. Since the topology of a distributed
shared execution environment is constantly changing
(applications are being added, removed or updated, machines are
upgraded or added, the network is being tuned etc.), we need a
process that will keep up-to-date the topology of the existing
environment including any applications that are currently
executing on it.

Applications

Web Component Business Logic Component

DB Component

eBusiness Portal Order Mgmt. Inventory Billing

B
U
S
I
N
E
S
S

S
V
C
S

Ordering
Service

Online
Bill Payment
Service

In LAMDA, we differentiate between applications and services as
follows. Applications are considered as units of deployment which
bind together a set of components to be deployed as a group. For
example the Order Management application can have 2 EJBs3
representing order processing business logic, a DB component
representing the order schema and a set of JSPs4 that represents the
interface into ordering, order status determination etc.

3 EJB stands for Enterprise Java Beans which are server side

components in the J2EE architecture.
4 JSP stands for Java server pages which are server side pages

than are used to generate dynamic web pages in web
applications.

Page 3 of 6

Business services are transactions that have a clear customer access
point such as a web site link or a GUI button that can start the
transaction. Business services thread through various applications
touching individual components along the way. Quality of Service
(QoS) requirements should exist on business services such as the
bill payment service will have availability of 99.9% with 85% of
the transactions exhibiting response times of less than 1 second!
Applications themselves may have individual QoS but that is
relatively less important.

The two of these concepts are orthogonal. Developers are
concerned with applications that encapsulate some functionality
while IT administrators are concerned with managing services as
seen by the customer.

2.1.2 Topology and DMTF
The topology of the environment which forms the basis for most
of the work once determined will need to be stored in a topology
model. This is where DMTF comes in. We have adopted the
DMTF descriptions and information models of distributed
applications as well the management interfaces given by JSR77 to
store our topology. The application server model which is
currently under development as well as the models of systems is
being used to store the data extracted from our discovery process.
We have also extended these where required and are in the
process of putting together XML interfaces to extract the data.

2.1.3 Analytical Basis
In order to have a predictive model of both capacity management
as well as potential failures, we need an analytical model of an
application and its execution infrastructure that we can solve
under the constraints specified by the needed application QoS.

For the purposes of self configuration as it relates to performance
tuning and capacity management we are using Hierarchical
Queuing Petri Nets (HQPN) to model our environment. HPQNs
are a variation of Colored General Stochastic Petri Nets and
stochastic queuing models where we can build hierarchies of such
Petri nets recursively. Every place can be attached to a Queue to
represent scheduling policies and waits. The hierarchy is built up
by folding the sub Petri net to represent a single place which has a
timed wait. HQPNs have been employed in similar situations to
analyze application performance and the component model of
deployment is particularly well suited to be modeled using
HPQNs. For further information on HPQNs, we refer the reader
to [15]. They translate to their underlying Markov chains which
can be solved using well understood methods such as LQ
decomposition.

The architectural basis for self healing however is still in the
formative stage but we are leaning towards using multi-agent
architectures (MAS) coupled with distributed correlation
algorithms that correlate across the network, compute and
software infrastructure layers. MAS gives us the ability to
decentralize decision making as it related to root cause isolation
and also adds the notion of machine learning which is needed in
trying to isolate root causes from a variety of patterns that occur in
these complex environments.

2.2 LAMDA Architecture
LAMDA is essentially a closed loop optimization process. The
input to this process is a set of applications along with their QoS
needs and expected workloads. Initial physical design is a
byproduct of the analysis and optimization process of the
architecture but we expect this is a continual process driven by
changes in the underlying infrastructure as well as workloads.

The underlying infrastructure which is pre-built based on our
knowledge of the functioning of the containers, is augmented with
the knowledge about the topology of the application. So, for
example, if the application calls for a particular servlet to talk with
a specific DB schema, then we can build the underling analytical
model for performance analysis. We then solve the analytical
model and obtain the expected QoS under a particular physical
design. This is iteratively refined by moving around components
to optimize for the QoS parameters till we meet or beat the
expected QoS of the application.

Of course, this optimization has to be performed with all the
applications that share a common infrastructure, else it will not be
of much use in a real environment. The same approach can be
used to optimize the number of resources used as well and output
the best expected QoS from the application.

Figure 1: The Process Architecture of LAMDA

Auto

Discovery
Topology

Analysis of

Performability

Physical
Design

Runtime

Designer

Monitoring,

Fault Detection,
Correction

Application QoS
Requirements

Workload

Characterization

Page 4 of 6

3. Application to Web Application System
Design for Java Servlets
In this section, we will look into the application of the principles
described in earlier sections to the system design of servlets
containers. For simplicity, we are looking only at J2EE
applications currently although the techniques are likely to be
useful across a variety of similar component models such as .NET
and CORBA. The first of these models is that of a web application
that consists of a simple Web Server/Servlet container that hosts
dynamic content generation pieces of Java code known as
Servlets. As a simplification in our first model, Servlets execute
independently and don’t need to access backend resources for
either business logic or data. Given a servlet, we are able to model
it’s execution analytically using Queuing Petri-net models which
can be used to predict performance based on reward rates of the
underlying Markov chains. We are using this information to then
configure the Web Server and container according to the QoS
needs of the application.

3.1 Tomcat and It’s QPN Model
In order to study the performance and subsequently apply it to
physical design, we use the Apache Tomcat Servlet container as
our reference architecture.

3.1.1 The Tomcat Concrete Architecture

Conceptually, TOMCAT is split into two parts - a connector
which is tasked with handling the communication protocol and
it’s details and a backend server which is the actual Servlet
container.

 Figure 2: The Architecture of Tomcat

The server itself is built in a pipelined fashion making it possible
to have multiple requests flowing through the system even as
multiple threads are used to concurrently process requests. The
concrete architecture of Tomcat is shown in Figure 1. When a
HTTP request arrives at the Tomcat, these are the set of steps that
occur in sequence:

a. It is handled by the Coyote protocol adapter.

b. The adapter assigns a thread from the thread
pool.

c. The request is then associated with
HttpRequest and Response objects also
obtained from a pool. The request HTML is
parsed and the individual fields in the Request
and Response are filled in. Parsing may be
just-in-time as well.

d. The request is passed through a user defined
pipeline of filters where each step of the
pipeline does some (user defined) processing
on the Request and Response objects.

e. It then gets mapped to a virtual host which
then processes the request through its own
pipeline of filters.

f. The request is then associated with the context
of the web application with which it is bound.

g. The appropriate Java classes are loaded using
the right class loader. This step may be
skipped if the classes have already been
loaded and have not been invalidated by a
new deployment.

h. Finally, the request is associated with an
instance of the servelet and the service()
method of the servlet is called, which in turn
generally maps the type of HTTP request to
appropriate method of the servlet.

i. After the servlet finishes processing, the
response object flows through the same path,
freeing up resources which it had earlier
acquired and returning objects to respective
pools.

j. Finally, the Response is converted back to
HTTP response over the socket stream.

The above description shows that simply modeling the execution
of a servlet as a single queue is not appropriate and we need to
ensure that the different aspects of request processing need to be
taken into account in the analytical model for it to be accurate.

3.1.2 The Analytical QPN Model of Tomcat

Figure 3: Simplied QPN Model of TOMCAT

Page 5 of 6

The figures shows above depict the analytical model of TOMCAT
when executing servlets. We have employed a single colored
Stochastic Petri Net notation for now although different servlets
can be treated by the use of multiple colored tokens. Essentially
anything that is a source of contention can be represented by a
queued place while any point in the servlets container that is an
activity can be represented by a simple place and a transition.

The model itself has been considerably simplified compared to the
structural model of TOMCAT because of two main reasons:

a. The simplified model is roughly equivalent to the
structural model with the proviso that a constant amount
of time is allocated to the initial activities of parsing the
HTTP request, assigning a request and result object to
the request and then sending it on it’s way for further
processing. This is constant for any servlets that is
executed within the container.

b. The original model which we had come up with resulted
in state space explosion which most tools that solve
these models cannot handle.

The simplified model works quite well for our needs as we shall
see in the section on performance analysis.

4. Performance Analysis

We have solved these models with pre-specified ratio of
processing to I/O time of the servlets and samples of the results
are shown below. The results allow us to compare the
performance of the servlets in terms of end to end response time
as generated by the model and as measured on TOMCAT directly.

In this particular example, the reason why the response time is
increasing linearly with the number of concurrent clients is
because the thread pool size is set to 1 implying that multiple
requests have to queue and wait to be allocated a thread before
they can proceed with processing.

Increasing the thread pool size will see the response time being
flat up to the number of threads and then increasing linearly as is
expected. The key point to take away from this is that we now
have a fairly accurate predictor of performance of a web based
application without having to test it under varying load
conditions.

Confidence in the model can only improve with a more detailed
look at the activities within TOMCAT and given that our initial
predictor is fairly accurate, we are moving on to looking to
modeling DB interaction and middle tier components such as
EJBs which are significantly more complex in nature.

5. Current Status
This project was born out of the experience of several system
administrators who had the first hand experience of setting and
managing service QoS on multiple applications in a shared data
center environment. Since then we have added an analytical flavor
to the application management process architecture.

We have currently implemented a functional Discovery subsystem
which works off the meta-model described in earlier sections.
This tool does auto discovery of a networked environment and
can discover and map the topology of:

a. Compute layers consisting of heterogeneous operating
systems (SUN Solaris, Linux etc.) and classes of
machines.

b. Software infrastructure such as Apache Web servers
(Version 1.3+), J2EE Application Servers (JBOSS
Version 3.0+) and Oracle Databases (Version 8 and 9).

Thread pool size = 1

0

500

1000

1500

2000

2500

3000

1 2 3 4 5

No. of users

R
es

po
ns

e
tim

e
(m

s)

Model Results

Experimental Results

Page 6 of 6

c. Application components such as Servlets/JSPs,
Enterprise Java Beans and DB Schemas along with their
interdependencies.

The starting point for this tool is a range of IP Addresses which
serves as the bounds of discovery. We have also performance
benchmarked this tool up to a 300 server data center environment
and performance is more than adequate at about 15 seconds for a
100 servers with linear increase. We have also proved that
Discovery consumes less than 3% of the system resources to run.

We have also started our analytical modeling efforts and now
have models that can run off the discovered topology for
performance prediction. We have illustrated the TOMCAT model
here and are in the process of putting together such models for
enterprise applications that are N tier.

6. SUMMARY
To tackle the growing complexity of managing
distributed/networked applications, we have proposed
management architecture for autonomic computing of such
environments. The LAMDA architecture revolves around the
environment’s topology for which we have developed a meta-
model.

Although the work is ongoing, this paper states our position on
the architectural approaches that are required to deal with the
issues holistically. We feel that there will be significant benefit to
interact with the other researchers in the area who may be taking
other approaches and that the exchange of ideas will benefit all
concerned.

7. REFERENCES
[1] Bigus, J. P., et al. “A Toolkit for Building Multiagent

AutonomicSystems”,
http://www.research.ibm.com/journal/sj/413/bigus.html,
2002.

[2] Blair, G., et al., “Reflection, Self-Awareness and Self-
Healing in OpenORB”, ACM WOSS”, 9-14, Nov., 2002.

[3] Dabrowshi, C. and Mills K., “Understanding Self-healing in
Service-Discovery Systems”, ACM WOSS, Charleston, SC,
USA., 15-20, Nov., 2002.

[4] Dashofy E. M.m et al., “Towards Architecture-based Self-
Healing Systems”, ACM WOSS, Charleston, SC, USA., 21-
26, Nov., 2002.

[5] Fox A. and Patterson, D., “When Does Fast Recovery Trump
High Reliability?”, Proceedings of the EASY 2002, San Jose,
CA, October 2002.

[6] Ganek, A., “A letter from Vice President, Autononomic
Computing, Alan Ganek” http://www-
3.ibm.com/autonomic/letter.shtml, 2002.

[7] Garlan, D. and Schmerl, B., “Model-based Adaptation for
Self-Healing Systems”, ACM WOSS, Charleston, SC, USA.,
27-32, Nov., 2002.

[8] George S., et al., “A Biologically Inspired Programming
Model for Self-Healing Systems”, ACM WOSS, Charleston,
SC, USA., 102-104, Nov., 2002.

[9] IBM paper-1: “IBM autonomic computing challenges note:
academic focus article: challenges”,
http://www.research.ibm.com/autonomic/academic/challenge
s.html, 2002

[10] Mikic-Rakic, M., et al., “Architectural Style Requirements
for Self-Healing Systems, ACM WOSS, Charleston, SC,
USA., 49-54, Nov., 2002.

[11] Patterson, D., et al., “Recovery Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies”, In
Proceedings of the UC Berkeley Computer Science
Technical Report UCB/CSD-02-1175, Berkeley, CA, March
2002.

[12] Tivoli software, “Autonomic Computing: The Value of Self
Managing Systems”,
http://www.tivoli.com/news/features/oct2002/autonomic.htm
l, 2002.

[13] Vaidyanathan, K., Selvamuthu, D., and Trivedi, K. S.,
Analysis of Inspection-Based Preventive Maintenance in
Operational Software Systems, Intl. Symposium on Reliable
Distributed Systems, SRDS 2002, Osaka, Japan, October
2002

[14] Probability and Statistics with Reliability, Queueing and
Computer Science Applications, Kishore S. Trivedi, ISBN 0-
471-33341-7, John Wiley and Sons.

[15] F. Bause, P. Buchholz and P. Kemper – QPN Tool for the
Specification and Analysis of Hierarchically Combined
Queueing Petri Nets. Quantitative Evaluation of Computing
and Communication Systems, Lecture Notes in Computer
Science No. 977, Springer-Verlag, 1995

[16] DMTF CIM Specifications. http://www.dmtf.org

